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a b s t r a c t

Interaction with mobile devices serves as a link to the cyber world and allows us to characterise user
behaviours. The deep analysis of the interactions with the smartphone, aligned with the principles of
the Internet of People, allow us to distinguish between normal and abnormal use. One of the multiple
applications of this type of analysis will contribute to the early diagnosis of mild cognitive impairment,
based on anomalies in the interaction. This work aims to take the first steps towards that ambitious
goal: to determine the cognitive load required for different typical tasks with smartphones. By properly
identifying which tasks require a higher cognitive load, we will be able to start studying metrics and
indicators that contribute to the early diagnosis of cognitive pathologies. The analysis of cognitive
load was carried out after an experiment with 26 users who performed 12 typical tasks with a mobile
device while their brain activity was monitored through electroencephalography. The results identify
that there are clearly tasks with a higher cognitive demand, with audio production and consumption
being the most notable, which has been validated experimentally and statistically.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, many people have smartphones and other mobile
devices. This widespread use makes it possible to provide appli-
cations and services to address various problems, such as those
in healthcare. The large number of sensors in the smartphone
provide data on location, movement, voice, battery, application
use and more, which is a source of a great deal of information,
especially in assessing the behavioural aspects of users’ daily
lives [1]. With regard to health, for example, the analysis of
smartphone use allows us to track the locations and paths of the
GPS followed by users, which can be used to measure things like
anxiety levels to anticipate possible mental health problems [2].
Not only are sensor data relevant, but data from the interactions
between users and their own mobile devices (e.g. the mistakes
made while writing, the active/passive time in applications, the
dual task of using the smartphone while walking) also provide
valuable information related to human behaviour. Indeed, the
smartphone can be a diagnostic ally [3], but it should play a
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complementary role in the doctor–patient relationship. In partic-
ular, in the case of dementia, Blanka Klimova [4] evidenced the
potential of mobile apps for facilitating diagnostic support, min-
imising examiner bias, increasing patient independence, reducing
hospitalisation costs and improving the overall quality of life for
the elderly. All of this places analyses of interactions (explicit or
implicit) with smartphones in an important position, as they can
be very valuable both in the fields of human–computer interac-
tions (HCI) and healthcare, whether for diagnostic purposes or
even treatment.

This article is part of the project ‘‘Mobile computing-based
Multitasking for Mild cognitive impairment Monitoring and early
Screening (M4S)’’, which aims to contribute to the early diagnosis
of mild cognitive impairment (MCI) by monitoring dual day-
to-day tasks in terms of interactions with smartphones. MCI is
highly related with dementia and Alzheimer’s disease and its
early diagnosis can contribute for the detection and interven-
tion of them [5]. In fact, the World Health Organisation (WHO)
determines the early diagnosis in order to promote early and
optimal management as one of the main five goals for dementia
care [6]. In the initial stage of this project, the aim is to determine
the cognitive load required to carry out various typical tasks
performed on a mobile device, which is the main objective of
this work. The characterisation of smartphone typical tasks by
their cognitive load will help in selecting which tasks should
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have their performance affected by MCI. Thus, this is a critical
pre-requirement to face the next steps of the M4S project that
aims to assess cognitive decline analysing the smartphone daily
use. Anyhow, the conclusions and results of this document not
only contribute to the above-mentioned project but also to the
community of researchers in the field, leading to a better un-
derstanding of the cognitive processes associated with the use of
mobile devices.

This paper is an extension of [7], and its main contribution
is the improvement of the experiments in several aspects: (a)
the number of participants, which was 26 compared to 6 in the
previous paper; (b) the quality of the instrumentation, as the elec-
troencephalography (EEG) headset is a scientific device with more
accuracy, higher sample frequency and more channels; (c) the
specification of the protocol, which was improved according to
the application of the previous experiences; (d) a deeper analysis
of the data obtained. In addition, we added extra information to
the fundamentals and background, as well as a discussion section.

To study the cognitive load (i.e. the number of working mem-
ory resources or ‘‘mental effort’’ associated with a specific task,
concepts explored in depth in Section 2.1), we analysed the
EEG activity of users performing a set of typical tasks with a
smartphone. The fundamentals of the EEG-based cognitive load
analysis are also described in Section 2.1. To determine the set of
tasks to study, this paper proposes a taxonomy of smartphone-
based actions. We considered the related proposals in the litera-
ture (Section 2.2) and identified the significant characteristics of
the tasks to classify them. As a result, this paper also proposes
the HuSBIT-10 taxonomy: Human–Smartphone Basic Interactions
Taxonomy for 10-s tasks (Section 3). An experiment with real
users was conducted with the dual objective of (i) studying the
cognitive load of different typical tasks with the smartphone and
(ii) validating the classification made in the taxonomy in terms of
the mental effort associated with the identified task categories.
The protocol, material, and methods of the experiment, as well
as the analysis and results of the data from the experiment,
are developed in Section 4. Section 5 discusses the results, their
meaning and the possible bias of the experiment. Finally, Sec-
tion 6 concludes the paper, talking about the goals accomplished
and future work.

2. Fundamentals and background

This section will talk about the background of this study,
focusing on cognitive load fundamentals and smartphone–user
interaction.

2.1. Cognitive load

Cognitive load is one of the main topics of this paper, hence
it is necessary to go deeper into what it is and how it can be
measured.

2.1.1. Cognitive load fundamentals
Brain processes follow a pattern common to most people, even

though each person usually responds in a specific way to external
stimuli. A common link is cognitive load, a concept that refers to
the number of working memory resources used to accomplish a
task. Thus, the level of cognitive load depends on the characteris-
tics of the task to be performed and the subject who performs it.
Each task has a different load, that is, it may be more complex or
simpler (depending on the steps or the level of precision required
to perform the action), and each subject processes it differently
according to his/her abilities and aptitudes [8]. It is common to
refer to the cognitive resources that are used to perform a task as
mental effort, which means that the terms ‘‘cognitive load’’ and

‘‘mental effort’’ are often used interchangeably, although they are
not exactly the same.

With these basic concepts in mind, we can mention Sweller’s
[9] theory of cognitive load, which focuses on working memory
and, specifically, on Mayer’s [10] theory of multimedia learn-
ing. These theories are part of the cognitive sciences that seek
to improve multimedia environments [11] within the informa-
tion processing paradigm, taking it as a ‘‘natural information
processing system’’ [12].

For this work, we assume that tasks with smartphones have
different mental loads and are related to some external stimulus
that may come from one or more channels, thus translating the
tasks into cognitive information. Mostly auditory and visual chan-
nels activate working memory. Information processing in work-
ing memory is related to the activity that is consciously carried
out [13]. Furthermore, recent research has shown that working
memory is separated into three processors or channels [11].
When information passes through this memory, it is distributed
between two partially independent processors, i.e. auditory and
visual processors, which manipulate verbal and graphic informa-
tion, respectively. In addition, there is a third processor known
as the central-executive processor, which is responsible for co-
ordinating the processing of information entering and leaving
working memory.

Therefore, consideration should be given to how to present the
information to avoid overloading these channels. Additionally, it
is essential to consider whether the information is new, so that it
can be acquired only if the subject’s mental activity can relate it to
mental schemes previously stored in long-term memory [10,14].
When a person has done a task repeatedly, his/her processing is
different because he/she has response patterns associated with
that task, and the execution is faster or easier to do. This is
achieved with practice time and depends on the intuitiveness of
the tasks, which was considered in the development of our work.

All the previous fundamentals are considered in this paper to
define the taxonomy tasks with the smartphone and to define the
experiment protocol, as we describe in the following sections.

2.1.2. Cognitive load measures
There are lots of ways to estimate the cognitive load asso-

ciated with a task, but, according to [15], there are three main
approaches: (1) self-reports, (2) dual-tasks and (3) physiological
measurements. The self-report method consists of asking the par-
ticipants of a task about how difficult they perceived the task to
be or about the mental effort required for it to be done. Estimating
the cognitive load using this method has an important disadvan-
tage, namely the high subjectivity involved in the responses of
the participants. Through the second method, the dual-tasks, this
subjectivity can be avoided. Dual-tasks consist of performing two
tasks at the same time in such a way that, as the difficulty of
the main task increases, the performance of the secondary task
decreases, which can be objectively measured. An example of
this could be trying to keep a constant beat with a foot as the
secondary task while performing a typical cognitive load task, like
the N-Back test [16]. The main problem with this technique is
that the secondary task has its own load, so it complicates the
estimation of the cognitive load associated only with the main
task. Physiological measures avoid the problems of the other two
methods, but they also have some disadvantages, notably, for
many, the cost of the devices to acquire the physiological data and
the difficulty to process said data. There are many physiological
parameters that can be used to estimate cognitive load, like pupil
dilation, heartbeat or neural activity. Eye tracking-based methods
are really popular, and they have been proven to work as an index
of mental workload, either through eye movement [17] or pupil
dilation [18]. There are also other methods like electrocardiogram
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(ECG) [19] or galvanic response [20] that are also used but are
not as popular. EEG [21], a signal that is directly influenced by
the cognitive load, is another very popular and frequently used
method that can be used to measure neural activity.

Integrated cognitive load assessment in daily activities is still
an unexplored field. As can be seen from the measurement mech-
anisms above, they all focus on testing in controlled environ-
ments. One of the few works that link cognitive load to mobile
phone tasks is [22], which identified some examples of tasks
that characteristically require working memory, namely typing
information, deciding on a path and searching from display. To
our knowledge, there are no works that attempt to quantitatively
characterise cognitive load and its possible decline during the
daily use of smartphones. Therefore, there is still no evidence
about which specific tasks performed on the phone are suitable
for this purpose, being this one of the challenges of this work.

2.1.3. EEG-based cognitive load analysis
In relation to the electrical activity of the brain and its analysis

through EEG, four main locations of the brain have been discussed
in the literature to study neurological activity: parietal, occipital,
temporal and frontal regions [4,23]. It has been observed that
this neurological activity produces a range of electrical waves at
different frequencies with a greater or lesser level of coverage
depending on the task being performed.

A clear example of the differences that occur in the electrical
response of the brain associated with neurological activity can
be seen in the electrical oscillations emitted during sleep com-
pared to those made when awake. The brain produces very low
frequency (<1 Hz) electrical waves that are reflected in the EEG
signals of sleep stages, between the 0.55–0.95 Hz range and with
peaks at 0.7–0.8 Hz in the frequency band known as delta [24].
In contrast, higher frequencies and faster waves predominate in
waking conditions, where the bands range from 0.5–40 Hz. The
intervals corresponding to each band are as follows: 0.5–4 Hz
(delta band), 4–8 Hz (theta band), 8–13 Hz (alpha band), 13–
30 Hz (beta band) and, finally, 30–40 Hz (gamma band), although
there is no consensus on the exact limits of each band, and it is
common to find different ranges for each one in the literature.
As mentioned above, the composition of the electrical response
largely depends on the cognitive task.

EEG allows the capture the electrical response of the brain by
means of electrodes placed on the scalp. These electrical signals
are generated by ionic movements in and around neurons during
the activation and deactivation of neurons involved in a cognitive
task. EEG measures the fluctuating voltages in these electrical
signals. While there is no straightforward way to estimate cog-
nitive load from EEG electrical signals, some approaches can be
found in the literature. The three most commonly used analysis
techniques are: (i) Event-Related Desynchronisation (ERD), (ii)
Theta–Alpha Ratio (TAR) and (iii) techniques based on machine
learning. In relation to detecting changes in cognitive load using
the ERD technique, Klismech found that the spectral power in the
theta band increases, while the spectral power in the alpha band
decreases [21]. Further relevant contributions have studied the
use of ERD from alpha and theta bands to measure cognitive load.
For example, Antonenko et al. have applied the ERD technique to
two different case studies related to the learning context [25].

In addition, some recent studies have explored the use of
the TAR technique as a measure of cognitive load [26–28]. In
particular, Trammell et al. [24] have found associations between
age and estimated cognitive load by using this technique. TAR is
obtained by dividing the spectral power of the theta band of an
electrode placed in the middle frontal area, which is known as Fz,
by the spectral power of the alpha band of an electrode placed in
the central parietal area, which is known as Pz.

Other novel and powerful approaches to estimate cognitive
load are based on machine learning. Many research studies have
used these techniques for this particular purpose, for exam-
ple, [29], which uses Naïve-Bayes, and [30], which uses deep
convolutional neural networks. Through machine learning mod-
els, robust and useful metrics can be extracted from EEG signals,
although some problems have been reported in regard to the
sample size and data gathered from the acquisition trials. Specif-
ically, (i) it takes a large number of participants to adequately
train a classifier or fit a regression model to work properly on
EEG data from anyone; (ii) the studies found are mostly based on
supervised learning; therefore, a big labelled dataset is required
to train the model; (iii) the trained models are usually not
available, so they cannot be reutilised in other experiments. Such
considerations forced us to discard machine learning techniques
as a method for this work.

2.2. Mobile-device interaction background

There is a large area of literature on HCI focusing on mobile
devices. Nowadays, many projects and research studies utilise
user-centred design and development, emphasising the role of
usability and user experience in terms of interactions with mo-
bile devices. According to Hoober [31], users interact with their
mobile devices in three different ways: (1) using only one hand,
(2) using both hands, and (3) passively. This same paper also
indicated other types of considerations when studying human–
device interactions: whether use is active or passive; whether the
device is being used for speaking; and how users express their
body posture when interacting with their smartphones, namely
walking, standing or sitting.

Karam and Shraefel carried out an extensive study in 2005 that
led to the creation of a general taxonomy of gestures in HCI [32].
In this work, the authors also presented a review of possible
interactions with any device, not only mobile ones. Focusing on
smartphones, the most common inputs were the camera, the
touch surface and the sensors-on-body (e.g. accelerometer, GPS).
The last input is considered as a pervasive or implicit way of
interacting with the mobile device. In the case of interaction with
touch screens, Wroblewski [33] proposed a popular reference as
a standardised guide about gestures in these kind of displays.

Moreover, numerous works have focused on the analysis of
user–smartphone interactions in different domains, using a va-
riety of measurement mechanisms and pursuing multiple ob-
jectives. Today, works such as the one presented by Hinckley
et al. [34] show new ways to detect interaction with smart-
phone screens before it occurs, which is referred to as ‘‘pre-touch
sensing’’. Cameras and vision-based systems are also useful to
analyse interactions with mobile applications. Authors such as
Souza [35] and Chang [36] have highlighted the importance of
eye-tracking data for usability studies, comparing them with
traditional techniques.

It is possible to study behaviour by analysing the interactions
between users and their smartphones. In this regard, new pat-
terns of use and behaviour can be found [37], as well as different
types of smartphone users [38]. Smartphone use is an important
observational tool in psychological science. Taking into account
all the data provided by these mobile devices, as determined by
Harari et al. [1], it is also possible to measure and analyse patterns
of smartphone addiction by interacting with them [39,40].

Interactions with smartphones occur at different levels. These
interactions can be studied through information provided by
the operating system, built-in sensors and buttons on physical
devices, as well as with installed applications. Considering the
objectives of this article, and taking into account the related work,
in which no research on the classification of smartphone tasks at
the cognitive level has been found, this paper proposes a specific
taxonomy of the basic tasks related to the most common types of
interactions with smartphones in the following section.
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3. Proposed taxonomy: HuSBIT-10

According to the objectives of our study, we needed to define a
set of usual tasks focused on user–smartphone interaction. These
tasks are quick, simple and require less than 10 s. The name of the
taxonomy is HuSBIT-10: Human–Smartphone Basic Interactions
Taxonomy for 10-second tasks.

First, four types of interactions that a user could carry out with
their smartphone were identified: (τ ) touch, (ι) look, (ς ) talk, and
(η) listen. All of them are closely related to the human senses,
which are critical for analysing cognitive load and information
processing [8]. Additionally, considering some of the approaches
in the literature mentioned in Section 2.2, the types of interac-
tions can be classified into two categories: (α) active and (ρ)
passive, depending on whether the user explicitly interacts with
the device. This enables us to determine whether a specific type
of interaction of the first four types mentioned above is active or
passive.

Furthermore, any smartphone interaction task could employ
one or more of the above types of interaction. Therefore, we have
defined the AMPEC-10 as a term to group the five types of tasks
that a user can perform with the smartphone in a maximum time
of 10 s (limit obtained experimentally), making use of the four
types of interaction. The acronym AMPEC-10 corresponds to the
following grouping of tasks according to their type:

• (A) Automated. This represents tasks without a significant
cognitive effort that is typically performed automatically or
unconsciously.

• (M) Psychomotor. This kind of task requires a quick or direct
interaction with the smartphone, where the main difficulty
is to perform a touching interaction carefully or with proper
accuracy.

• (P) Production. This includes tasks that require basic content
creation, requiring creative skills to produce new content.

• (E) Exploration. This kind of tasks requires the analysis of a
set of data to obtain specific information.

• (C) Consumption. This defines tasks that involve content
consumption.

It is important to consider the prevalence of the types of interac-
tions (touch, look, speak and hear) in these types of tasks. A first
exploration reveals that touch and look interaction types are the
most common interactions between the user and the smartphone.
Also, as discussed in Section 2.2, talking and hearing occur less
frequently. This confirms what other studies in the literature have
found [41,42].

Based on these assumptions, the HuSBIT-10 taxonomy has
been modelled to classify any task with a duration of less than
10 s that users perform with their smartphones. In Table 1, there
is an overview of the identified tasks (classified by task type) and
some examples. The aim of the HusBIT-10 approach is to provide
support for classifying AMPEC-10 tasks in terms of planning and
cognitive load from a two-dimensional perspective, as well as to
promote replicability in other trials and experiments.

4. Experiment: Cognitive load in smartphone interactions

This section will explain how the experiment was performed,
including the protocol followed, information about participants
and materials used. The analysis process followed will also be
described, as well as the results of the analysis.

4.1. Experiment protocol and method

The experiment gathered evidence in terms of EEG data in
an empirical manner, with the data quantitatively analysed. The
question that guides this experiment is: ‘‘Do the different tasks
that are typical with mobile devices have characteristic and dif-
ferent levels of cognitive load?’’ This question made us propose
two hypotheses to be tested through this experiment:

Hypothesis 1. There are tasks with the smartphone that present a
characteristically higher or lower cognitive demand than the rest.

Hypothesis 2. The tasks or interactions with mobile devices iden-
tified in the HuSBIT-10 taxonomy have similar cognitive burdens
within each category.

The experiment was conducted in the MAmI research lab at
the University of Castilla–La Mancha, a group focused on health
informatics and HCI (http://mami.uclm.es). The participants were
informed about the scope and goals of this research and the
collected data. The work was conducted with 26 participants,
from 19 to 36 years old (31% females and 69% males) who
received and signed the information sheet and consent form,
which provided detailed information about the study’s objective,
procedures, and types of data to be collected. All participants
had the opportunity to consider their participation before making
a final decision. Thereby, the preservation of the dignity and
autonomy of the participants was ensured by their voluntary
participation and the fact that they could leave the study at any
time without any consequences. The age range selected serves
to ensure that participants are adults who are in a life stage
prior to the onset of cognitive impairment, or at least to reduce
the risk of suffering from any type of cognitive impairment that
could bias the data. We based this decision on the studies that
determine that deterioration begins to occur naturally after the
age of 45 [43].

This study followed the empirical method for gathering ev-
idence regarding EEG data while participants interact with a
smartphone. The protocol employed within the experiment can
be summarised as follows: (1) all participants were wearing the
EEG headset (Fig. 1a) and sat at a desk with the smartphone
(Fig. 1c); (2) participants were required to perform the EEG cal-
ibration with the software provided by the manufacturers of
the headset (Fig. 1b); (3) all participants were told about the
general procedure that consisted of performing 12 tasks with a
duration of around 10 s, which were randomly sorted for each
participant to avoid any bias related to the order of activities; (4)
all participants received instructions for the actions to perform
with the smartphone to ensure they fully understood them before
each task; (5) the participants, without receiving any additional
instruction, performed all the tasks planned. This entire process
for each participant took approximately 30 min.

4.2. Material

The cognitive load was studied using a device for capturing
EEG signals for scientific purposes, the Bitbrain Versatile EEG
16. This device has 16 EEG channels and two references for
positioning and accurate spatial resolution. The EEG headset in-
cludes a flexible cap that allows the customisation of the position
of the water-based electrodes. The configuration used for the
experiments, according to the International 10–20 System [44], is
shown in Fig. 2 and consists of five frontal electrodes (F3 and F7
on the left hemisphere, F4 and F8 on the right hemisphere, and
Fz in the midline), four temporal electrodes (T3 and T5 on the
left hemisphere and T4 and T6 on the right hemisphere), three
central electrodes (C3 on the left hemisphere, C4 on the right

http://mami.uclm.es
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Table 1
AMPEC-10 tasks classification according to HuSBIT-10 approach.
Task category Id Task type Characteristics Examples

Automated
A1 Query an item (α) (τ , ι) Check time/Check if there are

notifications/Check if I have Wi-Fi

A2 Action on any physical button (α) (τ ) Turn on–off device/Turn up–down volume

Psychomotor

M1 Pattern (α) (τ , ι) Device unlock (with unlock pattern)

M2 Move (α) (τ , ι) Add and move a shortcut

M3 Dismiss (α) (τ , ι) Close opened apps, Close notification preview

M4 Copy & Paste (α) (τ , ι) Share information among applications

M5 Select (α) (τ , ι) Select a part of a text

Production

P1 Text Production (α) (τ , ι) Add a new contact/Set an alarm/Write a
message/reminder

P2 Voice Production (α) (τ , ς ) Make a call/Make a voice command/Create
voice message

P3 Visual Production (α) (τ , ι) Take a photo

Exploration

E1 Search on a textual set (α) (τ , ι) Search for a contact/Search for a song/Search
for date in the calendar/Last call made to
someone

E2 Search on a visual set (α) (τ , ι) Search for a specific application/Browse
images/Change direct-access settings (e.g.
airplane mode)

E3 Analysis of textual contents (α) (τ , ι) Change setting details (e.g. data roaming)/Do a
search in an Internet browser

E4 Analysis of visual contents (α) (τ , ι) Search for a route/site on a map

Consumption

C1 Text Consumption (ρ) (ι) View/Read notifications, Read a text message

C2 Audio Consumption (ρ) (η) Listen to an audio message/Listen to a podcast

C3 Media Consumption (ρ) (ι, η) Watch a video

Fig. 1. Experiment setup with the following materials: (a) Bitbrain Versatile EEG
16 EEG headset; (b) Laptop with the required software to collect raw data and
eeglib to process and analyse; (c) Smartphone Samsung J6 with Android 9.0 Pie;.

hemisphere and Cz in the midline), three parietal electrodes (P3
on the left hemisphere, P4 on the right hemisphere and Pz in
the midline) and one occipital electrode (Oz). The headset uses a
sequential sampling method at a rate of 256 samples per second
with a resolution of 24 bits. To collect the EEG raw data, we used
the Bitbrain viewer software, which was provided by the headset
manufacturer.

For the EEG data processing, we used specialised software
developed to process EEG data called eeglib [45,46], which is
a Python-based library for EEG processing that provides data
structures for that purpose. This library can load CSV and EDF files
that are typical formats in which EEG is stored and also allows the
user to import the data from Python and NumPy data structures.
It can apply three different pre-processing techniques to the

Fig. 2. Positions of the electrodes used during the EEG recording for the
experiments.

signals: bandpass filtering, z-scores normalisation and Indepen-
dent Component Analysis. It also includes a set of processing
techniques to extract features from data: FFT, Higuchi Fractal
Dimension, Petrosian Fractal Dimension, Hjorth parameters, De-
trended Fluctuation Analysis, Lempel–Ziv Complexity, Multiscale
Sample Entropy, Synchronisation Likelihood and Pearson Cross
Correlation Coefficient. The library includes a tool to generate
datasets (in pandas DataFrame format) that can be easily used
to apply to machine learning techniques or to perform statistical
analysis.

The smartphone used in the experiment was a Samsung J6
with the operating system Android 9.0. The list of specific tasks
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to perform is shown in Table 2. The selection of the specific
tasks to be performed in the experiment is arbitrary, since there
is no literature background on how to make such a decision
based on scientific evidence. The selection followed a series of
basic criteria: (a) the tasks are consistent with the HuSBiT-10
taxonomy, (b) they are consistent with the neuropsychological
theories set out in Section 2, (c) they avoid tasks that are heavily
dependent on previous knowledge or experience and (d) they
require at least 10 s to be completed to have enough data for
analysis. In relation to the second requirement, we included tasks
associated with working memory in accordance with the findings
of [22]; the set was completed with tasks that clearly require
controlled and conscious processing. For example, task E2 was
chosen as a visual exploration that requires selective attention
in a context with distractors. Regarding the latter requirement,
some tasks are made up of several sub-tasks, such as M2 or M5,
because all the tasks were required to take 10 s, and some had to
be lengthened that way.

As we show in Table 2, there are three tasks per category to
keep the same number of tasks in each category, so they can be
analysed more consistently. Therefore, the following tasks from
the taxonomy were excluded: M1, M4 and E1. M1 was discarded
because it implies knowing a pattern beforehand, which compli-
cates carrying it out within the experiment. To perform the M4
task, it is usually necessary to also do M5, so M5 was selected
instead of M4 to facilitate execution. Within the Exploration
tasks, all were suitable for the experiment, so E1 was arbitrarily
discarded. Thus, the total number of evaluated tasks was 12.
The design of the list of tasks follows the considerations and
fundamentals about cognitive load in Section 2.1, trying not to
overload any channels or include too much new information for
participants.

The category Automated was omitted due to the extremely
low cognitive load associated with unconscious or mechanical
tasks. The information processing can be either controlled or
automatic [47,48], considering whether it occurs when the in-
formation at hand is consciously being addressed. Moreover, a
characteristic alteration of controlled processes has been demon-
strated in people with dementia [49]. This is the reason why
Automated tasks were not considered.

4.3. EEG data processing

Participants performed all the tasks described in Table 2,
specifically, three defined tasks per category considered in the
HuSBIT-10 proposed taxonomy. EEG activity was recorded during
each task for a 10-s interval (EEG segment). The recorded EEG
data can be found in the link in the Supplementary Material
section.

The data processing is graphically described in Fig. 3. The left
side of the figure shows the structure of folders. It is composed
of three levels, the first one being made up by a folder for each
participant. Each of those folders contains another folder for each
task. The task folders contain the files created during the EEG
recording, which include not only the raw EEG data but also other
data like the Inertial Measurement Unit (IMU) data or the EEG
impedances. There are 26 (participants) × 12 (tasks) = 312 EEG
files in total.

Each of those files was loaded and pre-processed by applying
a 2–15 Hz bandpass filter to reject artefacts and noise included
in the frequencies that are not necessary for this analysis. Once
filtered, the signal was segmented into 6-second windows, with
an overlap of half a second. For each of these windows, the
TAR was computed as indicated below and then averaged for all
windows.

TAR =
ThetaFz
AlphaPz

Theta Fz is the spectral power of the theta band (4–8 Hz) in the
electrode Fz (frontal midline), and Alpha Pz is the spectral power
of the alpha band (8–13 Hz) in the electrode Pz (parietal midline).
The TAR used for estimating the cognitive load of each task was
an average of all the windows. In the previous paper, the TAR
index was computed using four electrodes instead of only two
due to the limitations of the previous headset, which does not
have the electrodes Fz or Pz.

The next step was to build a table including the TAR for each
participant and task. One of the problems of comparing the TAR
between each participant is the high variability depending of the
particularities of each person. To solve this, the cognitive load
estimator was normalised for every participant using a min–max
scale, which is described below:

Normalized (Xi) =
Xi − min (X)

max (X) − min (X)

where X is a numerical signal, Xi is the element from X in the
position i, min(X) is the smallest element in X and max(X) is the
biggest element in X. This type of normalisation has the main
advantage of easy interpretability because all the numbers are be-
tween 0 and 1. It should be noted that this type of normalisation
significantly changes the distribution of the data, going from a
Gaussian to a bimodal one, since there are a lot of extreme values
(0 and 1).

The last step averaged the whole table with the normalised
values from each task to obtain a cognitive load index associated
with each task.

4.4. Results

The experiment results show differences among the cognitive
load associated with some of the tasks. Table 3 summarises the
average cognitive load value for each task, considering all the
participants, while Fig. 4 shows the boxplot representing the
same information. It can be observed that the task with the
highest cognitive load is P2, which consists of audio production,
followed by C2, in which the participants were listening to an
audio recording. From this, we can observe that both tasks are
related to audio. The tasks with the lowest cognitive load are E2,
which consisted of counting elements in a picture, followed by C1,
in which the participant reads a text. Analysing each task group,
relevant facts from each group can be observed. One general idea
that can be extracted is that all the groups contain one element
that notably differs from the other two. The Production group
(P) has the highest cognitive load, and P2 has a considerably
higher value than P1 and P3. The Consumption group (C) ap-
pears to have the least cognitive load as it contains the second
and third elements with the lowest cognitive loads, but C2 has
a significantly high value. In the Psychomotor group (M), M3
and M5 have close values, while M2 is marginally higher. M2
involves dragging an icon from the apps menu to the smartphone
main screen, which presented some problems for the participants
because this is done in different ways depending of the version
of the phone’s software; some of the participants were used to
other ways of executing this task, which could have increased
the cognitive load. Lastly, the Exploration group also contains two
types of tasks with a similar cognitive load (E3 and E4) and one
that was notably different (E2).

To check if H1 can be accepted, a one-way ANOVA was carried
out, the results of which are shown in Table 4. They show a rather
low p-value, thus rejecting that the average of all groups is the
same at a significance level of 0.05, which confirms H1.

To explore this more in depth, we decided to perform a pair-
wise Student t-test between every task. Student t-test was chosen
because the size of the sample is small (n = 26). Table 5 shows
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Table 2
List of tasks performed in the experiment according to HuSBIT-10 taxonomy.
Task category Task type Specific task in the experiment

Psychomotor

M2 Add and move an app shortcut (2 times).

M3 Close all apps in the background.

M5 Select one word, then two, then two and a half words
in a Wikipedia article.

Production

P1 Write down an excuse or justification for not attending
a meeting with someone.

P2 Create a voice message answering a friend who has just
written about cancelling a meeting.

P3 Take an artistic photo of nearby objects considered to
be the most expensive.

Exploration

E2 Count the number of beach umbrellas in a picture from
‘‘Where’s Wally’’?

E3 Switch off data roaming in the device settings.

E4 Search how to reach a given place (about 500 m away)
with a map of the current location.

Consumption

C1 Read a synopsis of the book Portico on Wikipedia.

C2 Listen to a voice recording.

C3 Watch a video about soap cutting.

Fig. 3. Graphical representation of the processing applied to the data.

Table 3
Results of cognitive load in each task performed in the experiment according to
HuSBIT-10 taxonomy. The colour of each cell is a gradient going from dark red,
which represents the minimum in the row, to bright green, which represents the
maximum in the row.

the matrix with the p-values of the application of the t-test to
each pair of tasks; the cases in which p => 0.05 are shown in
green, and the cases in which p < 0.05 are shown in red. To avoid
type I errors for the whole experiment, we also applied the Holm–
Bonferroni correction, which is indicated using asterisks. Extreme

cases, like P2 or E2, have different means than most of the other

tasks, while the means of central cases are too similar between

them. As the distribution of the data cannot be ensured to be

normal, both t-tests could be affected by that, although they are
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Table 4
Results of a one-way ANOVA analysis performed with the data.

Df Sum of
squares

Mean sum
of squares

F p-value

Task 11 4.255313 0.386847 4.951202 4.52E−07
Residual 300 23.43956 0.078132

Fig. 4. Boxplot representing the cognitive load for the 12 evaluated tasks.

robust to non-normal distribution whenever the sample statistic
follows a normal distribution.

We also grouped the tasks by the type of interactions ((τ )
touch, (ι) look, (ς ) speak and (η) hear) involved and averaged
them. The results are shown in Table 6. It is important to note
that some tasks belong to more than one group, and that the
groups speak and hear consist of only one task. With regard to
the passive (ρ) and active (α) components of each type of task,
they were averaged, as well, showing a mean value of 0.39 for
passive tasks and 0.46 for active tasks.

5. Discussion

This section discusses the scope of the obtained results. It
is necessary to note that the EEG signal has certain limitations
due to its nature. EEG signals can be very sensitive to noise and
pick up unwanted artefacts [50] caused by many factors, such as
facial movements like blinking or mouth movements [51]. For this
reason, EEG data are not directly analysed as a whole; they must
be filtered, processed, validated with metrics or characteristics
(as is the case with TAR) and, finally, analysed in detail. For
these reasons, the diversity in the data obtained, such as non-
uniformity between subjects and intra-subjects, as well as the
standard deviation in the results obtained for cognitive loads, is
reasonable.

Considering this, the results obtained show that the main
categories identified in the taxonomy do not carry a clearly higher
or lower cognitive load in a categorical way. It is observed that
Production activities usually carry a higher cognitive load possibly
because of their creative component, requiring the user to plan
and devise content. In general, Consumption and Psychomotor
activities require less cognitive load, with Exploration activities
being in the middle. There are some tasks that are significantly
outside the norm. On the one hand, task E2, which consists of
counting umbrellas in an image, has a low cognitive load possibly
because it only requires visual acuity and concentration, with-
out the need for higher level cognitive tasks such as executive
function. On the other hand, the C2 task about consumption of

an audio content, in addition to having a higher cognitive load
than the rest of the Consumption tasks, has the highest standard
deviation. C2 together with P2, both with the highest cognitive
loads, have in common, unlike the rest, the use of the auditory
channel, which also requires language processing. Passive tasks
show, in general, a smaller cognitive load than active tasks, which
could imply that active tasks are more demanding. This finding
is consistent with Mayer’s [10] cognitive theories of multimedia
learning and has its roots in Paivio’s [52] theory of dual coding. It
focuses on how we acquire new information through dual chan-
nels and then process it with short-term memory and integrate it
into long-term memory. Dual channels have limited capacity and
require active processing (organising information and integrating
it into mental models). For this reason, information from dual
channels generally carries a greater cognitive load.

It can be noted that there are important differences in the
results from the previous paper to this one, in which the Ex-
ploration tasks had the highest cognitive load. In the present
paper, the Production tasks showed the highest cognitive load,
and the high cognitive load of listening to an audio record-
ing was observed. There are many possible reasons for these
changes. Possibly this is because of the usage of a different head-
set where we considered the exact electrodes for TAR calculation
(in previous experiments we used a less precise headset with an
approximation in the TAR metric). Other reasons are the different
computation of the TAR index and the incorporation of more peo-
ple into the experiment. We assume that both aspects, headset
and experiment set-up, is much more reliable in the current work.
Anyhow, there are consistencies between both experiments: The
Consumption and Psychomotor tasks had the lowest cognitive
load, and Exploration tasks showed a higher cognitive load than
these two groups.

How movement during activity affects the results should be
considered, as it could affect the EEG signal. The participants in
the experiment were asked to try to move as little as possible,
and they complied quite well. However, the P3 task involves more
movement by the participants, as they have to turn their bodies
to look for items to photograph, so the value of the TAR for that
task cannot be ruled out.

Finally, it should be noted that, although attempts have been
made to identify characteristic tasks of each type, there is a high
degree of dependence on the task itself. Likewise, the previous
knowledge, experience and skills of the users condition the cog-
nitive load required by each task. To mitigate this limitation, a
population uniform in age and with high knowledge and experi-
ence in the use of new technologies was chosen. In any case, and
in future work, it would be interesting to define multiple tasks of
the same type and categorise the previous experience of users to
measure the correlation (if any) among these aspects.

6. Conclusions

With this work, we are aiming to take the first step towards
a new research line that aims to contribute to the early diag-
nosis of MCI through the analysis of everyday interactions with
smartphones. One contribution of this paper is HuSBIT-10, the
taxonomy of typical tasks with smartphones. The taxonomy is
based on similar classifications focused on other devices found in
the literature, as well as on the cognitive components related to
each of the tasks. Researchers in HCI can use this taxonomy as a
model that classifies the types of interactions with smartphones.
However, the main contribution is the characterisation of the
cognitive load associated with each of these tasks. From these
results, we can confirm Hypothesis 1, which states that there are
tasks that present a characteristically higher or lower cognitive
demand than the rest, by looking, for example, to tasks E2 and
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Table 5
Matrix with the p-values of the application of Student t-test for each pair of tasks.
The cells in a red colour contain p-values under the significance value and the
ones in green colour contain p-values over the significance level. The cells with an
asterisk correspond to the comparisons that are considered different after applying
the Holm–Bonferroni correction.

Table 6
Cognitive load of tasks grouped by the type of interaction involved
and averaged.
Touch Look Speak Hear

0.446 0.403 0.715 0.533

P2. However, we cannot fully support Hypothesis 2 because every
category of the taxonomy has one task with notoriously different
cognitive burdens than the others. These results guide the next
steps of our research on early diagnosis of MCI. We will focus on
analysing the performance of the tasks with higher cognitive load
where mental decline should be clearly reflected. This is precisely
the hypothesis to be validated in the immediate future work.

This paper has shown an important advance from previous
research, mainly due to the effort to improve the quality of the
experiment. The previous work stated the importance of using
a better EEG device in future work, as well as increasing the
sample size to obtain a higher statistical significance, which has
been the course of action followed in this work. Future work will
also focus on studying the cognitive load during dual-tasking,
including other types of sensors like pressurised insoles. More-
over, future work will involve analysing cognitive load when
interacting with specific mobile applications for people with spe-
cial needs. Examples of this are augmented reality for guiding
people with dementia [53,54], mobile-based biomedical signal
measurement [55] and avatar-based apps for emotion manage-
ment [56]. Research will also continue to apply smartphones to
the early detection of cognitive impairment, relying on HuSBIT-
10 taxonomy. The future work in these terms would be to meet a
consensus about the taxonomy with relevant communities in HCI
and publish it into open-source repositories.
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