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Abstract
This article presents an easy-to-deploy and low-cost Internet of Things infrastructure for gait characterization based on a
set of wireless inertial sensors, called nodes, connected to the same local area network. These nodes allow acquiring iner-
tial raw data from the trunk of each frail elder involved in explicit gait trials carried out directly in the elderly care homes.
The Internet of Things infrastructure has been validated for Quantitative Gait Analysis showing an adequate accuracy in
the demarcation of relevant gait events and in the estimation of stride interval variability. The latter, in combination with
other characteristics that are commonly used to assess the state of frail elders and which come from anthropometric, bio-
logical, nutritional, functional, and mobility domains, allows us to perform a cross-sectional cohort study and a subsequent
multiple logistic regression to evaluate their impact on cognitive functioning. The cohort study and the multivariate
regression are performed using a sample of 81 frail elders from two nursing homes in Spain. The results obtained indicate
that frail elders aged 90 years or older, with moderate dependence in daily functioning and with a stride interval gait varia-
bility greater than 6%, were most likely to suffer cognitive impairment, representing what is called cognitive frail.
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Introduction

Limitations in mobility, the ability to move one’s body,
interfere with functioning and are a cause of loss of
independence.1 Gait is the most relevant manifestation
of mobility capacity and, in this sense, there is plenty of
research that has addressed gait characterization as a
widely used physical marker to assess the onset of func-
tional dependence.2–7

In the particular context of frailty assessment in the
elderly, gait characterization also plays a major role to
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describe physical functioning.8–10 Frailty can be under-
stood as a geriatric multifactorial syndrome recogniz-
able by an increased risk of adverse health outcomes
due to cumulative decline of multiple physiological sys-
tems.11 The Fried frailty phenotype,12 which is consid-
ered the most standardized definition of this syndrome,
also encloses the observation of gait changes, specifi-
cally slowness in gait as a relevant variable related to
functional decline.

Without a doubt, preserving functional capabilities
becomes a crucial objective in the elderly and gait exer-
cise is the most effective non-pharmacologic interven-
tion to promote active aging and to delay functional
decline which leads to frailty.13 Beyond functional and
gait domains, the frailty phenotype proposed by Fried
relies on other dimensions, such as anthropometric,
nutritional, and physiological to characterize the pro-
gression of frailty, which includes energy dysregulation,
chronic undernutrition examination, loss of muscle
mass combined with grip strength estimations, and self-
reporting of exhaustion and weakness. However, it does
not consider the cognitive functioning dimension and
mental state. In this sense, the relationship between
frailty and cognition (and vice versa) remains unclear in
the Fried phenotype.12

Although studies focused on the relationship
between frailty and cognition are still scarce, some con-
tributions can be found looking for associations.
Research efforts in this regard have reported that corre-
lations between the severity of cognitive impairment
and frailty syndrome become stronger as the frailty
state gets worse, also increasing the occurrence of other
adverse health outcomes (functional disability, hospita-
lization, and mortality).14–17 In fact, there is evidence
that cognitive impairment improves the predictive
validity of the operational definition of frailty, because
it increases the risk of adverse health outcomes.
According to the study carried out by Ávila Funes
et al.18 involving 421 frail elders, those with cognitive
impairment are significantly more likely to develop dis-
ability in activities of daily living (ADLs) and instru-
mental ADLs over the following 4 years than those
frails without cognitive impairment. This mutual influ-
ence between frailty and cognitive impairment has been
referred to as the cognitive frail state.19

Mainly, these associations in the cognitive frail state
are found in longitudinal studies that consider a full-
range of frailty and cognitive impairment conditions
and also mild and moderate dementias in their samples
of elders. The Fried phenotype is generally used to
characterize the frailty state (non-frail, prefrail, and
frail). Regarding cognition, the Mini-Mental State
Examination (MMSE)20 is commonly used in screening

tests for cognitive impairment. The original tool intro-
duced by Folstein et al. in 1975 is a 30-point question-
naire, which examines functions such as registration
(repeating named prompts), attention and calculation,
recall, language, ability to follow simple commands,
and orientation. It is used extensively in clinical and
research settings. For instance, the 35-point variation
from Lobo et al.21 is very popular in Spain.

However, cognitive assessment is less standardized
than frailty evaluation, leading to the development of
many specialized cognitive tests for particular situa-
tions.22 Cognitive assessment depends more on condi-
tions such as the elder’s educational level, the elder’s
daily functioning, and whether he or she is living in
community or not. Furthermore, it relies upon other
aspects such as the specificity of the assessment tool, for
instance, if it is focused more particularly on screening
for dementia (e.g. the Isaacs Set Test (IST)),23 or if it is
intended for cognitive impairment assessment to follow
the course of cognitive changes over time (MMSE).

Some of the screening tests are directly administered
to the elders (this is the case of the MMSE), while oth-
ers consist of patient interviews and a reliable informant
or collateral source (e.g. formal/informal caregiver). An
example of the latter is the Clinical Dementia Rating
Scale (CDR),24 which is based on a semi-structured
interview enclosing not only cognitive aspects but also
aspects about daily functioning.

The CDR has six different domains (memory, orien-
tation, judgment and problem solving, community
affairs, home and hobbies, and personal care). In this
case, the functional dimension is approached with a
high level of abstraction not taking into account mobi-
lity or aspects such as gait characterization. The CDR
test has been used, together with other cognitive impair-
ment predictors, to analyze the annual conversion from
Mild Cognitive Impairment (MCI) to dementia from
various recruitment sources and living environments.25

The related studies reflect differences in the rate of con-
version from MCI to dementia, ranging from 10% to
15% in those that use clinic samples,26,27 while conver-
sion rate in community-based studies is substantially
lower,28,29 ranging from 3.8% to 6.3%. The studies
conclude that functional state estimation (regardless of
using CDR or other similar functional marker) is the
only objective manner that helps to account for this
bias in the nature of the sample.25

Therefore, after introducing, (1) the associations
between frailty and gait characterization (from a func-
tional perspective), (2) the associations between frailty
and cognition, and (3) the most relevant cognitive
impairment screening tools and the importance of func-
tional assessment in the diagnosis of cognitive
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impairment are discussed. In such a context, the need
also arises to study the relationship between gait and
cognition.

Related work

While, at first glance, gait might appear an automated
task, it is connected to the executive brain functions
that allow the adequate performance in simultaneous
actions. Gait requires inputs from the motor cortex,
cerebellum, and the basal ganglia, as well as feedback
from visual, vestibular, and proprioceptive sensors to
produce the coordinated muscle firings and limb move-
ments that comprise the gait cycle.30 With this in mind,
gait is not a simple (physical) task, but a high cognitive
complexity task involving nervous system, muscle acti-
vation, and joint movements.

Neurophysiological changes due to the effect of
aging affect gait and, particularly, they produce a high
impact on the correlation patterns between strides.31,32

In the same way, changes in neurological function
related to pathological issues also affect gait variability.
There are several studies that investigate the effect of
neurodegenerative diseases such as Huntington’s dis-
ease,31 Parkinson,33 or some types of dementia34 in gait
variability. In the same vein, there are also works
focused on the relation between the onset of cognitive
impairment and gait disturbances, such as increasing
gait variability35 or gait slowing.36

In the study of gait variability, most researches have
focused on stride-to-stride fluctuations, also named
stride-to-stride variability, or simply gait dynamics.37

Many works quantify the magnitude of the stride inter-
val variability by using linear estimators (e.g. coefficient
of variation (CV) or standard deviation).38,39 Overall
level of consistency in the gait cycle is estimated by
these dispersion measures.34

There are different quantitative approaches to esti-
mate stride intervals, from arrays of pressure sensors
embedded in insole-based devices40 or in sensitive walk-
ways,41 to networks with multiple inertial devices
arranged on the body, known as Body-Area Networks
(BANETs) or, even, a single inertial device attached to
the trunk.42,43 There are also solutions based on
Computer Vision,44 which are able to segment heel-
strike (HS) events that mark the beginning of strides
from RGB or depth cameras.

As outlined in the ‘‘Introduction’’ section, there is a
peer influence between frailty and cognition. Particularly,
it has been proven that daily functioning capabilities
directly affect cognitive assessment, which is remarkable
in the prediction of conversion from MCI to dementia.
Also, it has been pointed out in this section that the

appearance of gait disturbances may be related to the
onset of cognitive impairment and its progression.

As part of this contribution, we attempt to charac-
terize the elder’s daily functioning capabilities in a hol-
istic way: first, through the administration (via formal
caregiver) of a functional assessment scale to examine
the performance in ADLs (Barthel scale)45 and, second,
through another functional scale of lower level of
abstraction focused on examining the mobility capacity
(Tinetti Performance Oriented Mobility Assessment
(POMA)).46 Both are complemented by quantitative
gait characterization through the developed IoT
(Internet of Things) infrastructure. We have focused
our attention on elderly in assisted living facilities
(elderly care homes). That is why we have developed
an easy-to-deploy and low-cost IoT infrastructure for
gait characterization in these environments. Functional
domain is complemented with other characteristics
from anthropometric, nutritional, and physiological
domains to go deeper into the frail state
characterization.

Objective

The proposed IoT infrastructure is one more tool in the
study of associations between characteristics used to
describe frail condition and mental state in frail (elders
diagnosed as frail according to the Fried frailty pheno-
type) elderly people.

Specifically, we try to infer which is the impact on
mental state of several characteristics that help to go
deeper into the specific frail condition. These character-
istics come from functional and mobility (gait charac-
terization), anthropometric, biological, and nutritional
domains. Cognitive state is determined by the Spanish
variation of the MMSE test (Lobo et al21). The set of
variables for the rest of the domains will be introduced
in the cross-sectional study detailed in the subsequent
section.

The main contributions of this work can be
described as follows:

1. The development and validation of an IoT infra-
structure for gait characterization. It consists of
wireless inertial sensors (nodes) attached to the
trunk of each elder, specifically to the thoracic
area. The nodes only require a Wireless Local
Area Network (WLAN) in order to acquire
inertial raw data during explicit gait trials per-
formed in the elderly care homes. Inertial raw
data are processed offline to demarcate relevant
gait events and to segment stride intervals.
Mean and CV of the stride intervals are com-
puted to characterize gait.

González et al. 3



2. Performing a cross-sectional cohort study
(descriptive statistics) focused on elders previ-
ously diagnosed as frail according to the Fried
frailty phenotype. The sample of frail elders is
divided based on the presence of cognitive
impairment, estimated by the 35-point MMSE
variation.21 The study allows to statistically
analyze the prevalence and the effect on mental
state of separate variables from functional and
mobility domains, including gait characteriza-
tion through the IoT infrastructure (1), and also
anthropometric, biological, and nutritional
domains.

3. Fitting a multidimensional logistic regression
model (inferential statistics) used to infer infor-
mation about the combined impact on the men-
tal state of domains, variables, and categories
that were considered in the cross-sectional
cohort study (2).

The following sections address each of these
contributions.

IoT infrastructure for gait
characterization

The specifications of the IoT infrastructure developed
for QGA (quantitative gait analysis) are presented in
this section. The infrastructure will be used to assess
gait variability (stride interval variability) in frail elders
through explicit gait trials carried out in the elderly care
home’s facilities. Objective information about gait
variability, gathered using the infrastructure, will serve
to characterize elder’s mobility, together with other
scores obtained in functional scales. These variables,
along with others from the rest of the domains consid-
ered, will be used in the descriptive statistical and in the
logistic regression studies to analyze and discover asso-
ciations between frailty and cognition (mental state).

An overview of the IoT infrastructure for QGA is
shown in Figure 1. The infrastructure can be divided
into three different layers: Sensor layer, Analytics and
Intelligence layer, and Communication layer.

The Sensor layer contains a set of wearable inertial
sensors (nodes) connected to the same WLAN. Each of
the nodes is attached to the upper cloth of one elder,
close to the T1 thoracic vertebra. A two-piece magnetic
gripper is used for clamping, as shown in the scheme in
Figure 2 and in the bottom-right corner in Figure 3(a).
Each wearable device is equipped with an ESP826612E
(Espressif Systems Inc., Shanghai, China) SoC (System
on Chip), which integrates a 32-bit RISC Tensilica
Xtensa LX106 micro-controller and a 802.11 b/g/n Wi-
Fi transceiver. This configuration enables serial I2C
communication with a single InvenSense MPU-6050

6DoF IMU (6 Degrees of Freedom Inertial
Measurement Unit (tri-axial accelerometer + tri-axial
gyroscope)) (InvenSense Inc., CA, USA).

MQTT broker

Analytics and
Intelligence layer

Sensor layer

Communication layer

Web client

Web server

Gait event 
demarcation

Gait parameter
estimation (e.g., 

step/stride
intervals)

Dispersion 
measures

Wearable 
device / node

Straightness 
analysisRemote

Procedure
Calls

Trunk inertial
raw data

Figure 1. Overview of the IoT infrastructure for QGA.
IoT: Internet of Things; QGA: quantitative gait analysis; MQTT:

Message Queuing Telemetry Transport.

VT

ML AP

6-DOF IMU
close to T1
thoracic vertebra

Upper cloth
fabric

Magnetic 
gripper

yaw

pitch
roll

Figure 2. Scheme showing the position of each wearable
device (node) attached using the magnetic gripper. Vertical (VT),
antero-posterior (AP), medio-lateral (ML) axes, and Euler angles
are displayed.
6-DOF IMU: 6 Degrees of Freedom Inertial Measurement Unit.
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The MPU-6050 includes an onboard Digital Motion
Processor (DMP) in its chip. The DMP fuses the accel-
erometer and gyroscope data together to minimize the
effects of errors inherent in each sensor. The DMP
computes orientation after data fusion in terms of qua-
ternions and then converts it to Euler angles avoiding
gimbal locks. All this processing is done internally (by
the DMP) without intervention of the ESP826612E
connected via I2C, freeing it from that computing load.
InvenSense does not reveal the fusion algorithm used
to combine the data and to estimate orientation angles
from accelerometer and gyroscope data.

Finally, the wearable device is powered by a
1000mAh Li-Po battery. Figure 3(a) shows the hard-
ware that makes up one node which is enclosed in a
three-dimensionally (3D) printed ABS plastic case.
Figure 3(b), for its part, shows one node placed in the
right position during an explicit gait trial performed by
one elder involved in the study.

The Sensor layer makes possible to acquire trunk
accelerations and orientations from each elder during
explicit gait trials in the elderly care homes and trans-
mit these raw data to a local server (broker) using the
MQTT (Message Queuing Telemetry Transport, a
lightweight application protocol on top of the TCP/IP
protocol based on publication/subscription policies to
defined messages, known as topics) messaging protocol.
MQTT is commonly implemented in IoT networks for
managing sensor data transmissions between machines.
The IoT infrastructure is capable of transmitting trunk
accelerations and orientations from various nodes
simultaneously to the broker at 50 Hz uniform sample
rate. This frequency is adjusted on the basis of the
results obtained by Antonsson and Mann,47 where the

recommended minimum sampling rate is higher than
30 Hz to clearly demarcate gait events.

We get to use two inertial nodes working simultane-
ously in the explicit gait trials carried out in the elderly
care homes. Therefore, two elders were performing the
gait trial simultaneously most of the time.

The Analytics and Intelligence layer communicates
with the MQTT broker to perform different processes,
as shown in Figure 1. The Gait event demarcation ser-
vice is subscribed to the sensors/imu_raw_data/# topic,
acquiring trunk accelerations and orientation angles
(Euler angles) from the nodes, together with corre-
sponding timestamps and node identifiers. It is an off-
line service which implements an algorithm to
demarcate HSs (the gait events that occur when heels
contact the ground for the first time, which marks the
beginning of new strides) and toe-offs (TOs) (the gait
events that occur when toes lift off the ground, which
represents the final period of foot contact followed by
a swing phase).

The algorithm for gait event demarcation from
trunk accelerations was presented in our previous
paper.43 It allows us to identify HS and TO events from
acceleration signals through the scale-space filtering
idea. Cut-off points between filtered acceleration sig-
nals as a result of convolving with varying levels/scales
of Gaussian filters and other features against temporal
variation and noise are used to identify peaks that cor-
respond to these gait events.

The algorithm in González et al.43 was tested on
an LSM330 digital tri-axial accelerometer and digital
tri-axial gyroscope (STMicroelectronics; Geneva,
Switzerland) embedded in an Android mobile phone.
The sampling rate was set to 70 Hz and the mobile

Figure 3. Details of the nodes in the sensor layer: (a) hardware inside each wearable device and image of the magnetic gripper
used to attach it to the upper cloth, (b) inertial-based node placed in the T1 thoracic region (upper back). It was used to acquire
trunk accelerations and orientation angles during explicit gait trials.
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phone was positioned lower than the nodes of this
infrastructure, specifically over the second lumbar ver-
tebra (L2) using a customized belt with the screen fac-
ing away. This algorithm has been reused in the
Analytics and Intelligence layer of this infrastructure to
demarcate gait events from data gathered by the nodes.
Its behavior is adequate, according to the validation
performed with different participants without apparent
problems on the gait and ranging from 25 to 65 years
old. Validation is explained in detail in the following
section.

The algorithm works practically ‘‘out of the box’’ at
the new position of the IMU (vertebra T1 instead of
L2) and with the new sampling rate (50 Hz instead
70 Hz). The new configuration does not require to
modify the scale-space filtering procedure nor the ker-
nels of the Gaussian filters, independent of this change
in frequency. It is only necessary to adjust the prede-
fined energy threshold, originally set to 0.13, to 0.11
according to the new higher position of the IMU to
avoid the loss of possible local maxima when gait is not
so energetic. Please see the algorithm details in
González et al.43

In addition to the gait event demarcation, other pro-
cessing stages are performed in the Analytics and
Intelligence layer. Step and stride intervals are com-
puted by simply counting the time difference between
demarcated HSs. This is done by another offline service
after gait event demarcation. Furthermore, the step/
stride interval time series from the last processing stage
are used to obtain averages and dispersion measures:
mean, cadence (number of steps per minute), and CV,
all useful for gait characterization.

Finally, abrupt changes in the time series of the yaw
orientation angle (angle on vertical axis, as shown in

Figure 2) can be determined for straightness analysis.
This serves to segment straight paths and to
discard turns within explicit gait trials. The screenshot
in Figure 4(a) shows the viewer tool provided by
the developed Web client (Communication layer).
Particularly, a fragment of an explicit gait trial is
appreciated in the figure. The first plot shows trunk
accelerations in the three axes (with interactive option
to zoom in/out), as well as the instants of demarcation
of HS and TO events. For its part, the second plot
shows the trajectory of changes over time followed by
the yaw orientation angle. The segments with slope
close to zero (horizontal) correspond to fragments in
which the participant who performed the trial was fol-
lowing a rectilinear trajectory. Inflection points and
steeper slope segments correspond to turns when the
end of the straight path was reached and the partici-
pant had to turn around and continue walking.

A snapshot made during an explicit gait trial per-
formed in one of the elderly care homes can be seen in
the Figure 4(b). An older woman, who participated in
the study of associations between frail and mental state,
walks at a natural pace following a straight line from
one end to the other of a 10-m long room.

The Web application in the Communication layer
concludes the specifications of the IoT infrastructure
for QGA, see Figure 1. The client side is implemented
combining HTML5, CSS3, and JavaScript and it incor-
porates AJAX (Asynchronous JavaScript And XML)
calls to make the necessary HTTP requests to the Web
server (running on the same machine as the MQTT bro-
ker). The server side implements a set of RPCs (Remote
Procedure Calls) in a Java EE (Java Enterprise Edition)
application to respond to the client requests. The Web
application provides an interface to add or remove

Figure 4. Details of an explicit gait trial: (a) the viewer tool included in the Web client application. Trunks accelerations and
changes in the yaw angles are displayed together with demarcated heel-strikes and toe-offs. (b) Older woman walking at natural pace
during an explicit gait trial. The Web client appears in the image controlled by an operator in charge of stopping the gait trial.
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nodes and to manage the nodes connected in order to
start/stop a new gait trial. Moreover, it allows us to
navigate between the explicit gait trials carried out pre-
viously and to see the details and gait characteristics of
any of them, as shown in Figure 4(a).

Infrastructure validation for gait
characterization

The validation of the IoT infrastructure is necessary to
test the accuracy achieved by the reimplementation of
the algorithm from González et al.43 with a different
IMU (MPU-6050), different sampling rate (50 Hz), and
a higher position on the trunk (T1 vertebra).

For this purpose, a setup composed by a 6.5-m hall
with an RGB camera (camera using the Red, Green,
and Blue color model) mounted orthogonally to the
gait trajectory is used. The camera captures a side/lat-
eral view of the gait trials. Specifically, the video acqui-
sition device is the Kinect version 1 (Microsoft
Corporation; Redmond, WA, USA), because of the
wide-angle lens that mounts its RGB camera. The
Kinect has a sampling rate of 30 frames per second.

Using the described setup, recorded gait trials are
then reproduced in slow motion (at 0.253 playback
speed) using VLC media player software48 to manually
identify HS and TO events. Timestamps from gait
events, marked by hand, are considered the ground
truth source for the accuracy comparison. Manual
marking has an approximate error margin of 6 1
frame (6 33.3 ms) with regard to the real gait event
occurrence.

A test operator is in charge of manually starting or
stopping the explicit gait trial by using the Web client
application of the IoT infrastructure (Communication
layer). The first HS inside the field of view of the cam-
era is used to manually synchronize gait event
occurrences.

A total of 16 gait trials have been recorded for this
experimentation. The differences in milliseconds
between the ground truth (manually marked gait

events) and the estimations made by the algorithm
from González et al.43 (reused in the IoT infrastruc-
ture) are analyzed. Each participant carried out two
gait trials. The 16 gait trials are broken down as fol-
lows: four male participants in the 25–35 age range
(eight gait trials), two female participants in the 45–55
age range (four gait trials), and two male participants
in the 60–65 age range (four gait trials). All participants
have a healthy gait cycle without any gait pathology or
known problem.

An example of the results of a gait trial is shown in
Table 1. The differences in milliseconds between the
considered ground truth timestamps and those from the
algorithm are exposed. As can be seen in this particular
test, there are overestimates of the HS and TO around
70 ms and underestimates of the TO over –50 ms, in
the worst case.

Figure 5 details the differences found for all the
explicit gait trials, between the ground truth and the
gait event estimations made by the algorithm in the
IoT infrastructure. One HS and two TO events are
undetected or missed in the experimentation and there
are no false positives in the whole set of gait trials.
Considering all participants have a healthy gait cycle
(without any visible gait disturbance to the naked eye
when walking), the average difference in HS estimation
is 35.6 6 21.5 ms and the average difference in TO
estimation is 43.5 6 18.2 ms. Thus, the results are
adequate holding this average. As can be seen in the
graphs in Figure 5, only few samples are over a differ-
ence of 70 ms in both cases, HS and TO event estima-
tions. The accuracy achieved is similar, slightly worse
in TO estimation.

Once the IoT infrastructure has been validated for
offline gait event demarcation through explicit gait
trials, we decided to integrate QGA and, specifically,
stride interval mean and stride interval variability char-
acteristics together with other functional and mobility
assessment scales in the descriptive statistical (cross-sec-
tional) and in the logistic regression studies detailed
below.

Table 1. Example of results of a gait trial from a 48-year-old female participant without visible gait impairments.

Heel-strikes (timestamps in milliseconds (ms))

Marked by hand (ground truth) 570 1197 1773 2430 2938 3452
Heel-strike estimation algorithm 537 1130 1772 2400 2941 3395
Differences 33 67 1 30 23 57

Toe-offs (timestamps in ms)

Marked by hand (ground truth) 783 1386 1990 2557 3150 3565
Toe-off estimation algorithm 752 1380 2010 2488 3201 3614
Differences 31 6 230 69 251 249

González et al. 7



Cross-sectional cohort study

The aim is to describe the sample of frail elders who
participated in this cohort study and in the logistic
regression model fitted later. The sample is analyzed, in
statistical terms, observing the prevalence and the effect
on mental state of separate variables from functional
and mobility domains, including gait characterization
through the validated IoT infrastructure, in addition to
anthropometric, biological, and nutritional domains.
The sample of frail elders is divided into two groups
based on the presence of cognitive impairment or not
(cohort variable). This is determined by the criterion
followed by the Spanish variation of the MMSE test:21

� MMSE score\23) cognitive impairment.

� MMSE score 2 ½23, 35� ) NO cognitive
impairment.

Summary description of the elders, the dimensions,
the variables considered, and the protocol followed to
accomplish the explicit gait trials are specified below.

Subjects, variables, and protocol

Figure 6 provides a visual overview of the sample of
participants. A much more complete and exhaustive
description of the sample can be seen in our conference
paper.49 The sample consists of 81 older people diag-
nosed as frail, according to the Fried frailty phenotype,
from two elderly care homes: Residencia Andamarc

Figure 5. Gait event demarcation differences between the ground truth and the IoT infrastructure: (a) heel-strike absolute
differences, (b) toe-off absolute differences.
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and Residencia Asistida de Ancianos, both in Ciudad
Real (Spain).

Multiple dimensions used for frail state characteriza-
tion are assessed. Specifically, age and sex are included,
in addition to the BMI (body mass index) from the
anthropometric dimension. Nutritional domain is con-
sidered through the Mini Nutritional Assessment
(MNA) test.50 The biological domain is also taken into
account by obtaining proteins, cholesterol, leukocytes,
and lymphocytes levels. Moreover, criteria for estimat-
ing the elder’s performance in ADL are taken into
account through the Barthel test.45 Mobility perfor-
mance is evaluated through the POMA.46 It should be
emphasized that POMA test not only examines gait but
also balances abilities in its score.

The Tinetti test is complemented by quantitative gait
analyses performed in both elderly care homes using
the IoT infrastructure. In particular, stride intervals are
computed from the demarcated gait events while walk-
ing at natural pace on a 10-m long path. Each explicit
gait trial lasts 1 min 30 s long per elder, so that an
appropriate number of strides is acquired to estimate
the stride interval average and variability. When the
end of the walking path is reached, the elder turns
around and continues on its way in the opposite direc-
tion until the time of the trial is over (see Figure 4(a)
and (b)).

Segments of inertial raw data that correspond to
turns are discarded from each explicit gait trial, as
stated before in the IoT infrastructure specifications.
This is done in this manner since accelerations and
decelerations carried out during the turns distort the

strides performed at normal pace, skewing the normal
gait pattern of each elder.

Finally, MMSE is included as the variable that dif-
ferentiates the cohort groups, as indicated before, see
Figure 6. All variables are categorized as shown in that
figure. Categorization of characteristics is a required
procedure in order to move from continuous values to
discrete sets of states for the multiple logistic regression
analysis conducted afterward.

Descriptive analysis

Because the sample size consists of 81 participants,
which is not too much to deal with the subsequent
regression procedure using continuous variables, the
categorization allows us to reduce data complexity and
extract latent summarized information with greater
power meaning. In other terms, the categorization
makes possible to cut down data complexity from con-
tinuous variables to ‘‘singular units of meaning’’ (cate-
gories), highlighting the systematic structure behind the
original dataset and retrieving conceptual meaning
from the acquired data. This preprocessing is appropri-
ate because of the small sample size of this study. As
will be explained in the multidimensional regression
model section, our efforts were first directed to use a
multiple linear regression with continuous variables;
however, the moderate linear correlations between vari-
ables and the small sample made this model not to con-
verge. For this reason, descriptive analysis and
subsequent regression have been performed with cate-
gorized variables.

Figure 6. Bar chart describing the distribution of the sample of frail elders according to different variables from anthropometric-,
biological-, nutritional-, functional-, and cognitive-related characteristics.
BMI: body mass index; MMSE: Mini-Mental State Examination; MNA: Mini Nutritional Assessment; CV: coefficient of variation.
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The bar chart in Figure 6 provides the description of
the sample of this study at a single glance. Each bar in
the graph represents the stratification of the sample in
terms of percentages or relative frequencies for each of
the 13 categorized variables considered, 12 independent
variables plus the dichotomous variable MMSE, which
will be the dependent variable in the subsequent logistic
regression.

The sample is made up of 81 participants, all older
than 75 years, with the group of 90 years of age or
older being the largest (’ 35%). Practically, half of the
sample were men and the other half (48%) were
women. Regarding the BMI, it was categorized accord-
ing to the standard classification into percentage ranges
from normal state (\25% of BMI) to obese (ø 30%)
state, passing through intermediate percentages that
indicated the overweight state. Looking at the bars on
the graph for this anthropometric characteristic, the
percentage of elders with normal weight was lower
(’ 18%) than those with overweight and obesity, both
categories around 40% of the sample.

Moving from anthropometric to nutritional domain,
the 30-point MNA scale50 has been used to characterize
nutritional state. This scale and the characteristic
derived from it in this descriptive analysis comprise
three groups: normality (ø 24 points), risk of malnutri-
tion (17 ł MNA ł 24), and malnutrition (\17).
Figure 6 shows that approximately 40% of the sample
was at risk of malnutrition, while the remaining had a
normal nutritional condition. There were no malnour-
ished elders. Within the biological domain, the follow-
ing characteristics obtained from blood tests have been
considered: levels of leukocytes and lymphocytes mea-
sured in microliters, proteins measured in grams per
deciliter, and cholesterol level in milligrams per decili-
ter. The four variables were divided into three cate-
gories (low, normal, high) according to reference values
accepted by health specialists. The categories are shown
in the bar chart in Figure 6. It can be seen that around
70%–75% of participants had normal concentrations
of leukocytes and lymphocytes, while ’ 20% had low
concentrations, which could be risky depending on
how far they deviate from normal values. Also, there
were proteins deficiencies (ł 6 g/dl) in approximately
20% of the sample. For cholesterol, almost 90% of the
sample was within the normal range.51 The rest of the
elders had high cholesterol ([200, 240]).

As for the Barthel index, severe functional depen-
dency was not represented by the sample. Thus, moder-
ate and mild dependencies and functional independent
categories were included. No category prevailed over
the rest, with the functional independent being the
smallest number in the sample (28.4%), compared with
37% of the mild dependence and 34.6% of the moder-
ate dependence category. Because of particularities of
the sample, the Tinetti test had more discriminatory

power than the Barthel scale between the participants.
In particular, 44.4% of frail elders had moderate risk of
fall, while 22.2% reflected an increased severe risk of
falling. One-third of the sample had more than 24
points in the Tinetti test, which indicates proper gait
and balance. Again, categories predetermined by the
test were used. In order to reinforce mobility assess-
ment with more quantitative techniques for gait charac-
terization, and taking into account the importance of
stride-to-stride (stride interval) variability in the related
work looking for associations between gait perfor-
mance and cognitive impairment,52 we incorporated
stride interval mean and CV as two more explanatory
variables in the functional and mobility domains. These
gait parameters were obtained by using our validated
IoT infrastructure and the explicit gait trials. Stride
interval mean was divided into four categories. The
lower and upper ones were determined according to the
stride interval series observed in our previous empirical
study involving an elderly population and gait trials.44

Elders without gait impairments carried out explicit
gait trials providing stride intervals ranging from 900 to
1550 ms in that work. With that in consideration, two
categories, \1000 and ø 1400 ms, were included in
addition to two inner equidistantly separated categories
in [1000, 1200) and [1200, 1400) ms for the current
study. The bar chart in Figure 6 concludes that frail
elders with stride interval means within the \1000 ms
category was the emptiest (’ 15% of the sample).

Categories for the stride interval CV were also
selected based on CVs collected from works about
stride interval variability in elders with/without falling
history.38,44,53 These studies provided comparable
results. Elders with a history of falls with CV values
around 3.0% 6 2.8%, and those without falling his-
tory (adequate gait and balance) ranging from 1.7% to
2.6% for the stride interval CV. Thus, stride interval
variability above 6% of CV is considered high. Only
about 12% of the sample had it.

Finally, the 35-point MMSE variation21 showed that
’ 70% of the sample was likely out of cognitive decline
risk regarding the MMSE criterion (MMSE ø 23). On
the contrary, about 30% had a score below 23 points,
which reflects a high probability of cognitive problems.

Before accomplishing the logistic regression, the
categorical variables reflected in the chart in Figure 6
have been individually compared to the MMSE
through the chi-square test of independence. It has
allowed us to discover whether there are significant
dependencies between each explanatory variable (sepa-
rately) and the MMSE.

The null hypothesis (independence) is rejected if the
p-value is less than 0.05, which means a 5% significance
level is adopted. Null hypothesis rejection means that
there is association between the explanatory variable
being checked and the MMSE. Those variables showing
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relationship with MMSE are the ones that will be con-
sidered later in the multiple logistic regression analysis.

Comparison of mental state (represented by the
MMSE dichotomous variable) and the rest of
explanatory variables

Table 2 contains the comparison of mental state, repre-
sented by the MMSE discrete variable (high presence
of cognitive impairment when MMSE score is below 23
points) and the rest of explanatory variables used in
frailty assessment. Each row in Table 2 contains details
for each explanatory variable. The distribution of parti-
cipants in the different categories that make up the
explanatory variable, together with a more detailed bar
chart containing the presence of cognitive impairment
for the considered categories, is illustrated in each row.
Finally, the p-value estimated after the chi-square test
between the explanatory variable and the MMSE is
provided for each case.

Individual correlations are marked with an asterisk
in the table (*) according to the chi-square test results.
We found relevant separate correlations between (1)
age and mental state (MMSE), obtaining a p-value =
6.6 3 1025; (2) Barthel scale and mental state, obtain-
ing a p-value = 0.0008; (3) Tinetti test and mental
state, obtaining a p-value = 0.003; and (4) stride inter-
val CV and mental state, obtaining a p-value = 0.0006.
In other terms, being 90 years or older was strongly
correlated with the presence of cognitive impairment;
being moderately dependent on the Barthel scale, scores
in the [61, 91) interval, correlated individually with the
presence of cognitive impairment; also elders in moder-
ate and severe risk of falling (scores ł 24 in the Tinetti
test) correlated individually with the presence of cogni-
tive impairment; and finally, large stride interval varia-
bility correlated individually with the presence of
cognitive impairment marked by the MMSE.

The other variables were not related to the MMSE
(not rejecting the null hypothesis in the chi-square tests)
and excluded from the subsequent multidimensional
logistic regression.

Multidimensional regression model

At first, our intention was to use the sample to fit a lin-
ear regression model for the MMSE variable consider-
ing it continuous (uncategorized). This inference model
would serve to analyze the combined impact on mental
state (MMSE score) of domains, variables, and cate-
gories considered in the cross-sectional cohort study.

Factor analysis (FA) technique was tested in an
attempt to construct the regression model. FA can find
latent relations (factors) between explanatory variables
simplifying the multiple linear regression model and

reducing its dimensionality. Factors may be interpreted
as patterns of association between these resultant vari-
ables with particular influences on the dependent vari-
able (MMSE score). These patterns are easily human-
readable.

Nevertheless, this method requires a high linear rela-
tionship among explanatory variables and no multicol-
linearity. For our study sample, the analysis of linear
correlations showed that there were low to intermediate
correlations (R;0:35at best) between pairs of explana-
tory variables. Therefore, FA would not provide proper
explanatory factors in this manner. This was confirmed
with the Kaiser–Meyer–Olkin (KMO) test providing a
value below 0.50, specifically, KMO was ;0:40. Thus,
FA was unacceptable.

Once FA was ruled out, binomial logistic regres-
sion54 was considered to fit the regression model for
the MMSE score. Logistic regression is better placed to
deal with non-highly correlated variables than FA. In
addition, it also fits better when the sample is not large,
as in this case (n = 81). Despite this, binomial logistic
regression has the disadvantage of providing a single
binary categorical response (MMSE dependent vari-
able) from multiple explanatory variables which can be
discrete or continuous. For that reason, we adjusted
the binary categorical response to match the threshold
that determines whether there is cognitive impairment
or not, according to the criterion followed by the 35-
point MMSE variation.

Beyond being used for inference purposes, the bino-
mial logistic regression model allows us to analyze the
impact of explanatory variables (characteristics to go
deeper into the frail state) on the probability of cogni-
tive impairment, which is the main goal of this section.

Particularly, the multidimensional logistic regression
has been performed for age, Barthel, Tinetti scoring,
and the stride interval CV in contrast to the MMSE
dependent variable. The first was the explanatory vari-
ables that had significant (individual) associations with
MMSE during the Chi-square tests.

The R software (a free environment for statistical
computing and numerical analysis)55 has been used to
fit the multidimensional logistic regression model. As
set out in the ‘‘Results’’ section, the model did not con-
verge at the first time using the implementation of the
binomial logistic regression algorithm in the R package.
It gave large standard errors. The issue was solved
through the bias reduced method of logistic regression
proposed by Firth56 implemented in the brglm package.

Results

Since the results of the validation of the IoT infrastruc-
ture for gait characterization have already been pre-
sented in its particular section, the current one is
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Table 2. Results of comparison between explanatory variables and MMSE (mental state).

Variable No. of
participants/
category

No. of participants/ category vs. mental state (MMSE) p-valuea

Age (years) 6.6 3 1025(*)

Sex 0.155

BMI (%) 0.316

MNA (/30) 0.549

(continued)
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Table 2. Continued

Variable No. of
participants/
category

No. of participants/ category vs. mental state (MMSE) p-valuea

Leukocytes (mL) 0.747

Lymphocytes (mL) 0.946

Proteins (g/dL) 0.979

Cholesterol (mg/dL) 0.092

Barthel scale (/100) 0.0008(*)

(continued)
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Table 2. Continued

Variable No. of
participants/
category

No. of participants/ category vs. mental state (MMSE) p-valuea

Tinetti test
(/28)

0.003(*)

Stride interval mean 0.116

Stride interval CV 0.0006(*)

Stride interval CV

MMSE: Mini-Mental State Examination; CV: coefficient of variation.

The p-values from chi-square tests are provided to study significant associations. BMI = body mass index; MNA = Mini Nutritional Assessment.
aChi-square test.
(*)Significant associations.
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focused exclusively on detailing the results of the multi-
ple logistic regression. It explains which is the combined
impact on mental state, specifically on the presence/
absence of cognitive impairment, of the characteristics
related to the frail state. These results are inferred from
the study sample. In essence, they help to discover asso-
ciations between frailty and cognition.

The binomial logistic regression algorithm imple-
mented in R (glm() function) suffered from the phe-
nomenon known as ‘‘perfect separation,’’ when feeding
it with our data. It failed to fit the regression model at
the first attempt. The standard errors for the parameter
estimates became very large, which was indicating the
occurrence of the perfect separation issue. This problem
is common in unbalanced binary models57 where the
separation manifests itself if one (or more) independent
variables divides equally zeroes and ones values in the
dependent one (MMSE in our particular case). A form
of penalized regression was used to solve the separation
issue allowing the model convergence, generating suit-
able deviation standard errors. Specifically, the prob-
abilistic method created by Firth56 helped us to
minimize the bias of maximum likelihood estimations.

The Firth’s method was used to fit a logistic regres-
sion model for the MMSE related to the selected vari-
ables (age, Tinetti and Barthel marks, and the stride
interval CV). Outcomes are presented in Table 3. It can
be seen from the table that the odds ratio (OR) for the
elders with high probability of mild cognitive decline
was 6.23 greater in elders aged 90 years or above, unlike
others aged 79 years or below. According to the p-
value, set to p = 0.05, the level of significance for the
remainder categories of age was over this value in the

consequent model; thus, associations with MMSE
could not be determined.

Concerning the Barthel functional test, frail elders
with moderate dependency level, with rating values
within the [61, 91) interval, had OR six times higher
than those with a score of 100 in the Barthel functional
scale. It means that these elders had six times more
probabilities of suffering cognitive impairment
(MMSE \ 23) than those without functional issues.
The significance level of mild dependence category (see
Table 3) raised a value of 0.143 which is higher than
the 0.05 p-value threshold, avoiding the existence of
associations between the occurrence of cognitive
impairment and mild dependence in Barthel scale.

Every OR in the Tinetti test categories exceeded the
significance level (.0.05). Scores in the range of [19,
24] had an OR close to 4; however, assumptions should
not be done because the p-value for the moderate risk
was above 0.05 (p-value = 0.097), as indicated previ-
ously. Nonetheless, a larger study sample would proba-
bly made this category fit in the 0.05 p-value. Looking
at the moderate risk of falling category in the Table 3,
adopting a significance level below 0.1 could confirm a
probability four times higher of having cognitive
impairment in comparison with those participants
without risk of falling (.24).

Paying attention to the stride interval CV variable,
once the logistic regression is performed, it can be seen
that the [2, 4) category falls within the significance level
(p-value = 0.050), rejecting the null hypothesis.
Therefore, it can be inferred a potential association, in
relation to cognitive decline, between the categories of
frail elders with stride interval variability above 6%

Table 3. Results obtained in the multiple logistic regression for the presence of cognitive decline (MMSE \ 23) in a population of
elders diagnosed as frail.

Variable Inner category label in R Category (definition) p-value ORa 95% CIb

Age (in years) age.senior75 [75, 80) (ref) 2 1 �
age.senior80 [80, 85) 0.539 0.36 0:01� 9:19
age.senior85 [85, 90] 0.903 1.11 0:20� 6:26
age.senior90 ø 90 0.041 6.23(*) 1:07� 36:34

Barthel scale (/100) barthel.independent Independent (100) (ref) - 1 �
barthel.mid Mild dependence [91, 99] 0.143 3:87 0:63� 23:82
barthel.moderate Moderate dependence [61, 91) 0.049 6.00(*) 1:00� 35:88

Tinetti test (/28) tinetti.absence Absence risk of fall . 24 (ref) - 1 �
tinetti.moderate Moderate risk [19, 24] 0.097 4:04( � ) 0:77� 21:16
tinetti.severe severe risk \ 19 0.684 1:47 0:22� 9:74

Stride interval CV (%) stride_var.high CV (%) . 6(ref) 2 1 �
stride_var.midH CV (%) [4, 6] 0.361 0:42 0:07� 2:69
stride_var.midL CV (%) [2, 4) 0.050 0.12(*) 0:02� 1:03
stride_var.normal CV (%) \ 2 0.756 0:54 0:01� 25:86

MMSE: Mini-Mental State Examination; CV: coefficient of variation.
aOdds ratio for presence of cognitive decline.
bConfidence interval for odds ratio.

Significant categories are marked in bold.
(*)p-value set to 0.05.

(�)p-value set to 0.1.
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(chosen as the reference category) and stride interval
variability within the [2, 4) range, as a result of the
regression. However, the association is negative, as
reflected by the OR which is \1 (OR = 0.12). An OR
equals to 0.12 means that the [2, 4) category is 88%, less
likely of suffering cognitive impairment than the .6
category (reference category). Thus, logistic regression
clearly determines that the risk of mild cognitive
impairment in the frail elderly population with high
stride interval variability (.6) is much larger than in
the frail elderly with moderate variability [2, 4). The
fitted model has not found evidence of association
between mental state and what is considered a normal
stride interval variation (\2%).

It should be noted that the presence of an OR \1,
for the particular case of the stride interval CV, is the
result of executing the implementation of the bias-
reduced logistic regression method, proposed by Firth,
and included in the R package brglm. This implementa-
tion takes the inner labels used in R to name the differ-
ent categories in each variable (see Table 3) and chooses
the first category label in alphabetical order as the refer-
ence one for each of the dependent variables in the
regression. In the specific case of the stride interval CV,
the reference category (the first category label in alpha-
betical order) encloses frail elders with a stride interval
variability above 6% (.6 or high-stride variability), as
can be observed in Table 3.

Another way of interpreting the previous OR can be
performed by alternating and taking as reference the [2,
4) category, which shows lower risk of cognitive impair-
ment. In this sense, it is required to simply invert the
OR (take the reciprocal of OR). That is, frail elderly
population with a stride interval variability greater than
6% has 1 / 0.12 = 8.33 times more likely to suffer cog-
nitive impairment in comparison with frail elders in the
[2, 4) range.

Discussion about the discovery of
associations between frail state and
cognitive impairment

The multiple logistic regression has resulted in a set of
significant ORs which were highlighted in Table 3 and
detailed in the previous section. This information,
inferred from the sample of frail elders, has been used
to evaluate the impact on mental state, in terms of the
presence/absence of cognitive impairment, of domains
and candidate variables that were included after the
cross-sectional study. As it will be explained below, not
all were significant.

Starting with the anthropometric domain, the chi-
square tests did not provide significant relationships
that could be generalized to the population of frail

elders between [sex and MMSE] and [BMI and
MMSE]. Conversely, age characteristic had significant
association with MMSE, being the only anthropo-
metric characteristic considered in the regression analy-
sis. Specifically, the results showed an increased
tendency to suffer cognitive impairment in frails aged
90 years old and above, in contrast to elders aged
80 years old and below.

According to the chi-square tests, neither the nutri-
tional domain (MNA characteristic) nor the biological
(leukocytes, lymphocytes, proteins, and cholesterol)
provided associations with the MMSE that could be
generalized to the population of frail elders. They were
not taken into account in the regression analysis.

Performance in ADLs, measured using the Barthel
test, yielded associations that could be extrapolated to
the frail elders. The logistic regression showed a higher
tendency of cognitive impairment in frail elders with
moderate dependence (\90 points in the Barthel test),
in contrast to those completely independent.

Concerning mobility assessment domain, QGA
through the validated IoT infrastructure (estimation of
stride interval variability) and Tinetti assessment scoring
provided separated associations with the mental state in
the chi-square tests. Conversely, stride interval mean did
not yielded significant association with the MMSE.

It should be noted that there were other gait charac-
terization features which might be gathered by the IoT
infrastructure (such as cadence and step interval mean
and variability), although they were discarded due to
multicollinearity issues at the beginning of the study.
Stride interval was the chosen candidate because of its
importance in the related work associating gait with
cognitive impairment, as stated in the ‘‘Introduction’’
section.

The fitted model after the regression analysis
showed the relationship between stride interval varia-
bility and MMSE. In fact, large stride interval variabil-
ity (CV . 6%) was the most influencing factor
associated with cognitive impairment in the entire
model. On a lesser association level, but still significant,
age and Barthel scale have also similar potential to be
congruent with the evolution of cognitive impairment,
according to the significant p-values and the compara-
ble OR obtained for the presence of cognitive decline.
However, the fitted model did not confirm any rela-
tionship between the MMSE and the Tinetti test, since
the resultant p-value did not reject the null hypothesis.
When the significance level is expanded to \0.1, the
category for moderate risk of falls [19, 24] could be
taken into account. In this hypothetical case, the OR
would reflect four times more probabilities of having
cognitive impairment than in normal mobility condi-
tion (without risk of falling . 24).
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Conclusions and future work

An easy-to-deploy and low-cost IoT infrastructure for
gait characterization has been presented and validated
in this article. It is based on a set of wireless inertial sen-
sors (nodes) connected to the same local area network.
These nodes allow acquiring inertial raw data from the
trunk of frail elders during explicit gait trials carried
out directly in the elderly care homes. QGA, achieved
using this infrastructure, has made it possible to obtain
objective and measurable information on the stride
intervals of frail elders, specifically their average and
the stride interval variability. In particular, this last
characteristic is presented in the related literature as a
factor that can be affected by the onset of cognitive
impairment, age, dementia, neurological diseases, and
so on, and as a potential functional marker for the early
detection of the onset of cognitive impairment when
used in combination with other classical scales of cogni-
tive impairment assessment.

This work analytically supports the trend set out in
the preceding paragraph by inferring, through logical
regression, which characteristics of those commonly
used to assess the state of frail elders are the ones that
maintain the strongest associations with the presence/
absence of cognitive impairment. It is shown that
stride interval variability (used as a quantitative indi-
cator of gait performance) is the most influential fac-
tor, in combination with advanced age and moderate
dependence on the performance of ADLs. On the
contrary, the subjective mobility assessment through
the Tinetti test (POMA) does not appear reflected as
a significant factor in the model fitted by multiple
logistic regression.

However, a constraining issue of this contribution is
the sample size used in the studies (n = 81). Adding
new participants to the logistic regression might achieve
greater distinctiveness in the MMSE (in charge of char-
acterizing the mental state). The performed analysis is
a binary logistic regression; therefore, we can only sep-
arate MMSE into two categories, one for cognitive
decline (MMSE \ 23) and one for the absence
(MMSE ø 23). Adding more frail elders to the sample
allows us to attempt a multinomial logistic regression
so that a categorically distributed MMSE variable
could be possible, separating cognitive impairment
state into mild, moderate, and severe categories.
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Comparison of a vision-based system and a wearable

inertial-based system for a quantitative analysis and cal-

culation of spatio-temporal parameters. In: Lecture notes

in computer science. New York: Springer, 2015, pp.116–

122, https://link.springer.com/chapter/10.1007/978-3-319-

26508-7_12
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